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Abstract

A two-scale model based on a database approach is presented to investigate alloy solidification. Appropriate assump-
tions are introduced to describe the behavior of macroscopic temperature, macroscopic concentration, liquid volume frac-
tion and microstructure features. These assumptions lead to a macroscale model with two unknown functions: liquid
volume fraction and microstructure features. These functions are computed using information from microscale solutions
of selected problems. This work addresses the selection of sample problems relevant to the interested problem and the uti-
lization of data from the microscale solution of the selected sample problems. A computationally efficient model, which is
different from the microscale and macroscale models, is utilized to find relevant sample problems. In this work, the com-
putationally efficient model is a sharp interface solidification model of a pure material. Similarities between the sample
problems and the problem of interest are explored by assuming that the liquid volume fraction and microstructure features
are functions of solution features extracted from the solution of the computationally efficient model. The solution features
of the computationally efficient model are selected as the interface velocity and thermal gradient in the liquid at the time
the sharp solid–liquid interface passes through. An analytical solution of the computationally efficient model is utilized to
select sample problems relevant to solution features obtained at any location of the domain of the problem of interest. The
microscale solution of selected sample problems is then utilized to evaluate the two unknown functions (liquid volume frac-
tion and microstructure features) in the macroscale model. The temperature solution of the macroscale model is further
used to improve the estimation of the liquid volume fraction and microstructure features. Interpolation is utilized in
the feature space to greatly reduce the number of required sample problems. The efficiency of the proposed multiscale
framework is demonstrated with numerical examples that consider a large number of crystals. A computationally intensive
fully-resolved microscale analysis is also performed to evaluate the accuracy of the multiscale framework.
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1. Introduction

Alloy solidification is multiscale in nature. Interaction between thousands or even millions of crystals gives
the overall behavior of the solidification process and defines the properties of the final product. Investigating
the interaction and growth of crystals in the microscale is computationally very intensive, whereas macroscale
models lack accuracy since they are based on a large number of simplifications. Multiscale modeling by cou-
pling macroscopic and microscopic models allows us to take advantage of both the efficiency of the macro-
scopic models and the accuracy of the microscopic models. There are mainly three types of multiscale
techniques for solidification used in the literature: (1) resolving microscale details in an efficient way, such
as using an adaptive mesh refinement [1–4] or an adaptive moving grid [5], since the main complexity in
the microscale arises from a moving solid–liquid interface, (2) performing analytical studies [6] or simple
numerical computation [7] in the microscale and passing the required information to the macroscale compu-
tation, and (3) designing multiscale algorithms driven by microscopic numerical solution data, e.g. regression
fit [8] and subgrid modeling [9].

By combining features of front tracking and fixed domain methods, we recently demonstrated the ability to
simulate interaction between hundreds of randomly nucleated crystals by utilizing adaptive mesh refinement,
the level set method and parallel computation [4]. Despite this improvement, adaptive techniques [1–4] are in
nature microscale models that are not practical for investigating interaction between far more than a few hun-
dreds of crystals.

An alternative multiscale technique performs analytical study in the microscale with certain simplifications
to provide microstructural information to the macroscale model. Ref. [6] models the solidification system as
solid phase, inter-dendritic and extra-dendritic liquid phases. The macroscopic transport equations for these
three phases are derived using volume-averaging technique and closed by supplementary relations, which are
obtained from analysis in the microscale. In [6], there is no numerical computation performed at the micro-
scale. But in some other studies (e.g. [7]), the microscopic problems are not avoided completely. Assuming
periodic distribution of crystals, numerical computation of a single crystal growth is carried out for every
point of a macroscopic grid to provide information for the macroscale computation. Although the numerical
computation is reduced, the assumption of periodicity is physically unrealistic. This limits its application to
only equiaxed growth. Without the ability to capture important physics in the microscale (e.g. randomness
in nucleation and crystal orientation), both of these methods [6,7] are phenomenological in nature regarding
their prediction for example of the microstructure type and size.

Multiscale algorithms driven by data provide the potential for investigating the interaction between thou-
sands or even millions of crystals. The microscale model tries to accurately capture important physics. Com-
putation with the microscale model is then used to provide necessary data for macroscale computation. In [8],
microscale computations are used to obtain data for regression fit of a predictive equation, which is further
used for macroscale computation. A disadvantage of this method is that the pre-assumed predictive equation
has a simple form. In [9], the idea of subgrid modeling is used for multiscale modeling of solidification. The
computational domain is divided into a number of small sub-domains, so that the simulation time can be
greatly reduced. However, this method is still computationally very intensive. Qualitatively, similar macro-
scopic conditions would lead to similar microstructure. In subgrid modeling, this similarity is not taken
account to reduce the required computational effort. In this work, we will quantitatively explore the similarity
between microscale computations.

The multiscale method used in this work falls into the heterogeneous multiscale method (HMM) frame-
work [10], which aims at designing combined macroscopic–microscopic computational methods that are
much more efficient than solving the full-microscopic model and at the same time lead to a desired level
of accuracy. The idea of building a database based on results from microscopic simulation of selected prob-
lems and using this database for multiscale computation is very straightforward and has been widely used in
many research areas. The database approach has not yet been fully explored for solidification processes.
The complex nature of solidification process causes difficulty in finding relevant problems to build the data-
base, and selecting results of relevant problems from the database to solve the problem of interest. Our
emphasis in this work is on addressing some simple algorithms for handling these difficulties. The plan
of this paper is as follows: Section 2 discusses the microscale model and the needed assumptions to reach
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a macroscale model with two unknown functions. The strategy of selecting relevant sample problems for
building the database and algorithms to use the sample problem data in the database for the solution of
the problem of interest are presented in Section 3. Section 4 discusses the techniques for speeding up com-
putation and quantifying microstructure features. Computational examples are provided in Section 5. At
first, a solidification example is considered that allows comparison with the solution obtained from a time
consuming fully-resolved microscale model. Finally, an example of the solidification of an Al–Cu alloy is
provided to demonstrate the capability of the database approach to perform multiscale analysis for realistic
alloy systems.

2. Mathematical model

The difficulty associated with modeling of solidification processes arises from the morphological complexity
of the resulting microstructure and the variety of length scales in the system. Under typical solidification con-
ditions, the system and interfacial structures are of the orders of 10�1 and 10�5 m, respectively.

Microscopic models (e.g. [1,3,11]) are developed to capture physical phenomena in the length scale of the
interfacial structures. As pointed out in [6], there are three disparate microscopic length scales (decreasing in
order): (1) the overall size of crystals (e.g. primary arm spacing k1 for columnar growth), (2) the secondary
dendrite arm spacing and (3) the radius of a dendrite tip. The domain size in these microscale studies is usually
chosen to contain one or more crystals/dendrites. The grid spacing in the discretization of the computational
domain is chosen to be less than the tip radius (therefore also less than the overall size of the crystals and the
secondary dendrite arm spacing).

For macroscale models (e.g. [12]), macroscopic variables including velocity, temperature and concentra-
tion are defined as the average values of microscopic variables within an averaging volume. The averaging
volume is selected [13] such that the scale it represents is small enough to capture the global effects such as
fluid flow, heat transfer and species distribution, but large enough to smooth out the details of the morpho-
logical complexities, inter-dendritic fluid flow, latent heat release and species redistribution. Therefore, for
macroscale modeling of solidification, we typically need to select the averaging volume to be of the size
of a few crystals.

In this work, we will investigate the interaction of multiple crystals using a microscale model with a fine
mesh (with grid spacing small enough to capture interfacial structures such as secondary dendrite arm spacing
and dendrite tip radius). With the microscale model, variation of temperature and concentration is observed in
the range of crystal size. After averaging the microscale model results, information will be extracted to aid
computation in a coarse-mesh using the macroscale model. The microscale model will also be utilized to val-
idate the macroscale model results.

The following simplifications are taken for both the microscale and macroscale models:

(1) All material properties are assumed to be constant if not mentioned. These include density q, heat capac-
ity c, latent heat L, heat diffusion coefficient k, solute diffusion coefficient D, liquidus slope ml, and par-
tition coefficient kp.

(2) Fluid flow effects are not considered.
(3) Solute diffusion in the solid phase is neglected.

2.1. Microscale model

The following governing equations for the temperature, h, and solute concentration in the liquid, Cl, are
used for modeling solidification in the microscale:
qc
ohðx; tÞ

ot
¼ kr2hðx; tÞ; x 2 X; ð1Þ

oClðx; tÞ
ot

¼ Dr2Clðx; tÞ; x 2 Xl: ð2Þ
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Solving the above microscale model is numerically nontrivial due to the existence of the moving crystal/liquid
interface. Due to the phase transformation, solute is rejected from the solid to the liquid leading to a solute
rejection flux at the interface, D oCl

on
¼ �ð1� kpÞClV n. The temperature on the interface, hI, satisfies the Gibbs–

Thomson relation: hI = hm + mlC
l + ec(n)j + eV(n)V, where n and j are the interface normal direction and

curvature, respectively. Finally, the velocity of the solid–liquid interface is governed by the heat flux jump
(classical Stefan condition), V ¼ qs�ql

qL .
A level set equation is used here to implicitly describe the evolution of the solid–liquid interface:
o/
ot
þ V kr/k ¼ 0: ð3Þ
The signed distance function /(x, t) is simply the distance of location x to the interface at time t but with ‘+’
sign, if x is the liquid phase and ‘�’ sign if x is in the solid phase. According to this definition, / = 0 represents
the solid–liquid interface.

Nucleation is a very complicated phenomenon related with the type and amount of impurities in the mate-
rial. We denote the number of impurities per unit volume, i.e. the density of impurities, as qn. Suppose that the
domain of interest has a volume of V, then there will be qnV potential nucleation sites with each impurity serv-
ing as a potential nucleation site. For each potential nucleation site i, we model three random variables, the
potential location for nucleation xi, the required undercooling for nucleation Dhn

i and the orientation Ii of the
nucleated crystal. These variables are defined below:

(1) xi is the location of the potential nucleation site. We assume that xi is equiprobable at each point of the
whole domain.

(2) Dhn
i is the required undercooling for the potential nucleation site i to nucleate and become a crystal seed.

If and only if the undercooling at the potential nucleation site i is greater than Dhn
i (i.e.

hm þ mlCi � hi P Dhn
i , where hm is the melting temperature, ml is the liquidus slope, Ci and hi are con-

centration and temperature at potential nucleation site i), site i becomes a crystal seed. We assume that
Dhn

i follows a normal distribution with mean l and variance r2.
(3) The other random variable, Ii, is the orientation angle at potential nucleation site i. The orientation angle

is the preferred crystal growth direction. We only consider here the randomness of orientation angle in
two dimensions, where Ii is sampled from a uniform distribution from 0 to 2p. After nucleation at loca-
tion of potential nucleation site i, the crystal may in general rotate (e.g. as a result of convection). This
leads to change in orientation angle for the crystal. This movement of crystal is not considered in our
microscale model. In other words, the orientation of the crystal, I, is assumed to be fixed during growth
of the crystal at the value it attains during nucleation (i.e. Ii if it is nucleated from potential nucleation
site i).

Implementation of the above microscale model has been discussed in [4,11] with demonstration of conver-
gence and accuracy for the computed solutions. In this work, we assume that the microscale model gives the
true solution. Focus will be on multiscale modeling to obtain for our problem of interest the same results as
obtained using the above microscale model but with significantly less computational effort.

2.2. Macroscale model

In volume-averaging models (e.g. [13]), a volume size is specified to perform averaging and obtain macro-
scopic variables. This averaging volume needs to be at appropriate size. If the averaging volume is too small,
there may be not enough microscopic data to smooth out the local variation. On the other hand, if the aver-
aging volume is too large, the global variation may not be accounted. Using the size of a few crystals as the
averaging volume size might be appropriate. However, crystal sizes usually vary significantly even in the same
solidification system. In this work, we will employ a different approach that avoids using an averaging volume
for defining macroscopic variables.

Let us first define the solution of the microscale model (microscopic variables), i.e. temperature, h(x, t), con-
centration, C(x, t), orientation, I(x, t) and signed distance /(x, t) to the solid/liquid interface at location x and
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time t. Computation of the microscopic variables is not deterministic because of the randomness in nucleation
during solidification as discussed earlier in the microscale model. We define the expectation of the microscopic
variables h(x, t), C(x, t), and /(x, t) as the macroscopic temperature, macroscopic concentration and liquid vol-
ume fraction as follows:
T ðx; tÞ � hhðx; tÞi; ð4Þ
�Cðx; tÞ � hCðx; tÞi; ð5Þ
f ðx; tÞ � hHð/ðx; tÞÞi: ð6Þ
Here H( Æ ) is the Heaviside function taking value 1 if the parameter is greater than 0, and value 0 if the param-
eter is less than 0. The expectation Æ Æ æ in the above definitions is over all possible distributions of potential
nucleation sites. As a consequence of the above definitions, microscopic variables need to be computed for
a few different distributions of potential nucleation sites before the macroscopic variables above are obtained.

In this work, we will only use the definitions in Eqs. (4)–(6) above to compare a fully-resolved microscale
simulation over the domain of interest (when such simulation is possible) with macroscopic variables intro-
duced as part of the multiscale framework.

Macroscopic temperature – The macroscopic temperature T is defined in this work as the solution of the
heat diffusion equation with a latent heat term as follows:
qc
oT
ot
¼ kr2T � qL _f : ð7Þ
This governing equation for the macroscopic temperature T is very similar to simple heat diffusion except with
a latent heat term �qL _f . The first law of thermodynamics, energy conservation, is implied in Eq. (7). This
assumption is also utilized in our previous macroscale model using volume-averaging techniques [13]. The
function f(x, t) (and thus its time-derivative _f ðx; tÞ) defining the latent heat evolution is as of now an unknown
function that needs to be specified as part of the multiscale framework.

Macroscopic concentration – The macroscopic concentration Cðx; tÞ is assumed to be constant, i.e.
Cðx; tÞ ¼ C0, where C0 is the initial concentration. Since convection is not considered in this work, solute
rejected from the solid crystals/dendrites will only cause micro-segregation [14] with variation of concentration
in the scale of the solute boundary layer. The size of the solute boundary layer (estimated as D/V, where D is
the solute diffusion coefficient and V is the solidification speed) is usually less than the size of the crystals. So in
the macroscale, which involves a significant number of crystals, the variation of the concentration is very
small. The assumption of Cðx; tÞ ¼ C0 is thus reasonable. This is also true for our previous macroscale
volume-averaging model in the case of negligible fluid flow [12].

Microstructure features – One is often interested in the features of the solidification microstructure at the
end of the solidification process, such as the primary dendrite arm spacing, the secondary dendrite arm spacing
or the Heyn’s interception measure. Let us denote in an abstract format the finally obtained microstructure
features at location x as K(x). The precise definition of K(x) used in this work will be discussed later in Section
3.4. In this work, we consider the macroscopic temperature T(x, t), macroscopic concentration �Cðx; tÞ, liquid
volume fraction f(x, t), and microstructure features K(x), as the macroscopic variables in our multiscale frame-
work. An averaging volume is needed to define the microstructure features K at a particular point x as dem-
onstrated in Fig. 1. We need to orient the average volume (rectangle) in a way such that it takes account of the
growth direction (the rectangle’s top and bottom sides are along the growth direction). In this work, we will
predict K(x) utilizing the data generated from directional growth problems (on the microscale) that are defined
from the features (growth velocity and temperature gradient) at point x. K(x) will be used to provide a mea-
sure of the type and size of the obtained microstructure at location x.

The final microstructure features are assumed to depend only on the cooling history and temperature gra-
dient history as follows:
KðxÞ ¼ KðRx;GxÞ; ð8Þ
where the cooling history Rx and temperature gradient history Gx are two functions of time t. They are
defined as Rx � oT ðx;tÞ

ot and Gx ” i$T(x, t)i, respectively. In this assumption (Eq. (8)), we use superscript x



Fig. 1. Schematic of average volume to obtain microstructure features at two points. The features K are defined by statistical averaging of
the results of appropriately defined microscale directional solidification problems.
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to emphasize that the cooling rate and temperature gradient depend on the location x. The bold form (R
and G instead of R and G) is used to denote that the cooling rate and temperature gradient vary with time.
The final microstructure features after solidification, K(x), are often of great interest as they are related with
the mechanical properties of cast products. There are lots of analytical and numerical studies in the litera-
ture [4,14–16] investigating the effects of cooling rate and thermal gradient on the microstructure pattern for
directional solidification. All these studies [4,14–16] demonstrate that the cooling rate and temperature gra-
dient determine the microstructural features for a given material even though there is no universal agree-
ment on the functional form of this dependence. However, they all point to Eq. (8) as a reasonable
assumption.

One significant simplification made in these available studies is that of constant cooling rate and constant
temperature gradient, so the commonly used approximations are of the form K(x) = K(Rx,Gx). In this work,
we are relaxing this assumption to K(x) = K(Rx,Gx). Although our assumption states that the whole history of
cooling rate and temperature gradient determines the microstructure, intuitively we know that only a part of
this history is important. At time much earlier or much later than a particular period, cooling rate and tem-
perature gradient have only minor effects on the microstructure. Therefore, it should be possible to replace Rx,
Gx in the above assumption with much simpler parameters. The proposed multiscale approach will provide a
reasonable replacement.

Liquid volume fraction f – We assume that the macroscopic liquid volume fraction only depends on the tem-
perature and microstructure features as follows:
f ðx; tÞ ¼ f ðT ðx; tÞ;KðxÞÞ: ð9Þ

In our previous macroscale volume-averaging model [13], the volume fraction was taken only as a function of
temperature for a given alloy, i.e. f (x, t) = f (T(x, t)). However, for a given alloy, we may obtain different
microstructure patterns, e.g. planar, cellular, dendritic, or mixed. To more accurately model the liquid volume
fraction variation, we consider its dependence on microstructure features, which leads to the above
assumption.

As a summary, our macroscale model defining T, C, f(x, t) and K(x, t) is given as follows:
qc
oT
ot
¼ kr2T � qL _f ; ð10Þ

f ¼ f ðT ;R;GÞ; ð11Þ
K ¼ KðR;GÞ; ð12Þ
Cðx; tÞ ¼ C0: ð13Þ
The purpose of the above simplified model is not only to capture the effects of microstructure evolution on the
macroscopic variables, but also to provide means to extract the microstructural features for a given values of
macroscopic variables.
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2.3. Unknown functions

Notice that even though the macroscale model contains only macroscopic variables, one cannot solve it
directly due to the existence of the two unknown functions, f(T,R,G) and K(R,G). Information is needed from
the microscale in order to determine these functions.

One approach in computing these functions is using analytical expressions. For example, the primary spac-
ing can be approximated using formulas for cellular or dendritic directional growth with constant cooling rate
and thermal gradient [14]. Simplifications are also taken for deriving analytical expressions for f(T,R,G) (e.g.
Lever or Scheil rules given in the form of f(T) [17]). In these expressions, very little microscale information is
incorporated in computing the volume fraction. Therefore, the estimated volume fraction may deviate signif-
icantly from the actual values for a given temperature and microstructural features.

Another approach is to use numerical analysis that is capable of removing several of the simplifications
required in analytical calculations. In fact, numerical methods and of course experimentation are the only
ways to quantitatively evaluate the unknown functions f and K without introducing too many simplifications.
A number of efforts in the direction of numerical study have been presented. For example, in our previous
work [4], we proposed a method based on the level set method with markers, which can be used to simulate
interaction between multiple crystals. In this earlier work, demonstration of convergence of the results with
adaptive mesh refinement was shown. In this work, we will use this previously developed microscale solver
to generate information for evaluating the two unknown functions.
3. The database approach

It is straightforward to think of running the microscale model for some particular problems and post-pro-
cess the obtained results to derive some estimation of the functions f and K. The particular problems, which
usually have small domains (finer scale), must be of some relevance to our macroscopic problem of interest,
which usually has a much bigger domain (coarser scale). We call the selected particular problems with smaller
domains as the ‘sample problems’. This idea is referred to here as the database approach. One can define dif-
ferent sample problems with different domains, different initial conditions or different boundary conditions.
Some of them may be relevant to our problem of interest, some may not. Selecting good sample problems
would be the key to success of the database approach for multiscale solidification modeling.
3.1. Domain of the sample problem

In addition to the domain of the problem of interest, we herein define the domain of the sample problem
where dendritic solidification results will be generated for use in the database multiscale approach. The
domain of the sample problem in general depends on the physics that we are interested to resolve on the
microscale. In particular, it should be large enough to contain a sufficient number of crystals for averaging
and small enough to minimize the computational cost of simulating in this sample domain dendritic solidifi-
cation (microscale model). In our numerical examples, the domain of the sample problems is selected as a rect-
angle that at the end of solidification contains around 10–100 crystals. For the examples considered later in
this paper, this is approximately 2

100
to 8:64

100;000
of the area of the problem of interest (i.e. of the problem where

we are interested to perform multiscale analysis).
3.2. Model M and features FM

In Section 2, we discussed two models (microscale and macroscale models). The microscale model (also
referred to here as the fully-resolved model) can be applied both to the sample problem domain as well as
to the domain of the problem of interest. However, the simulation corresponding to the last problem may
be impractical to perform for most realistic systems due to the intensity of its computational requirements.

Here, we introduce a third model (that for simplicity of presentation we will refer to as model M) to solve
the solidification problem.
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This model ‘treats the material as a pure material without modeling of nucleation’. Melting temperature of
the ‘pure’ material is modeled to be hm + mlC0. The governing equations for model M are as follows:
F

qc
ohM

ot
¼ kr2hM; ð14Þ

V M ¼
qs � ql

qL
; ð15Þ

o/M

ot
þ V Mkr/Mk ¼ 0: ð16Þ
Here, hM, VM and /M are the temperature, interface velocity and signed distance from the interface. The sub-
script M is used to emphasize that the solution is obtained from model M (not from the microscale model). qs

and ql are the heat fluxes at the solid and liquid sides of the interface, respectively.
Model M can be applied both to the problem of interest as well as to the sample problem domain. Fig. 2

shows for example its application to the domain of the problem of interest. Because the solidification material
(an alloy) is treated as a pure material without modeling of nucleation in model M, we expect that the solution
of model M (hM and /M) will not capture the important physics during the solidification process as well as it
will be captured by the previously discussed microscale model or macroscale model.

The solid–liquid interface solved with model M is stable since pure material is assumed without nucleation.
We define the solution features of model M at x, FM(x), to be the solidification speed, VM(x), and thermal
gradient in the liquid phase, Gl

MðxÞ, when the solid–liquid interface passes through location x, i.e.
F MðxÞ � V MðxÞ;Gl

MðxÞ
� �

as demonstrated in Fig. 2. For any given set of solution features V M;G
l
M

� �
, we

can find a unidirectional sample problem such that when it is solved with model M, the obtained solution fea-
tures at any location of the problem domain are the same as the given solution features. This is discussed next.

3.3. Model M applied to the sample problem domain for modeling directional solidification with constant features

FM

Model M is introduced here as a simplified model capable of identifying sample problems relevant to our
problem of interest. Let FM represent the features at point x of the problem of interest obtained with the appli-
cation of model M. We can now identify a sample problem that when solved with model M corresponds to
directional solidification with constant features FM. Indeed, it is not hard to verify that
hM ¼ hm þ mlC0 þ
aGs

M

V M
1� exp �V Mðx�V MtÞ

a

h in o
; when x < V Mt

aGl
M

V M
1� exp �V Mðx�V MtÞ

a

h in o
; when x P V Mt

;

8><
>: ð17Þ
x

Location of interface

MV
Interface velocity

x

M

Signed distance 

to interface φ

MT

x
MV

Liquid

Solid

Temperature profile in

liquid with gradient l
MG

Solid

Liquid

ig. 2. Schematic of solution features of model M (VM(x) and Gl
MðxÞ) as applied to the domain of the problem of interest.
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is an analytical solution that satisfies model M and gives the exact features ðV M;G
l
MÞ on the whole domain.

Here a � k
qc and Gs

M � Gl
M þ qLV M=k. The above solution satisfies qc ohM

ot ¼ kr2hM. The interface position at
time t is at x = VMt, since the temperature hM at location x = VMt equals to hm + mlC0, which is the melting
temperature of the ‘pure’ material. The temperature gradient at the left side of the interface is Gs

M, whereas the
temperature gradient at the right side of the interface is Gl

M.
To define a sample problem giving solution features V M;G

l
M

� �
everywhere on its domain, we only need to

select a domain and apply boundary/initial conditions according to the above analytical solution. In our
numerical examples, the following is used to define a sample problem: (1) Its domain is as discussed in Section
3.1. (2) The initial temperature is given by Eq. (17) with t = 0. (3) Adiabatic conditions are considered at the
top and bottom sides, whereas the heat fluxes at the left and right side are taken by differentiation of the ana-
lytical solution in Eq. (17):
Fig. 3.
proces
qleft ¼ kGs
M exp

�V Mð0� V MtÞ
a

� �� �
; ð18Þ

qright ¼ �kGl
M exp

�V MðL� V MtÞ
a

� �� �
; ð19Þ
where L is the length of the sample domain in the growth direction.

3.4. Microscopic (fully-resolved) model applied to the sample problem domain for modeling directional

solidification with constant features FM

The solution of the fully-resolved microscale model in the sample domain is not unidirectional since sym-
metry in the vertical direction is not preserved due to the unstable solid–liquid interface (as a result of solute
rejection) and the random nature of nucleation. However, application of the simple model M with the same
initial and boundary conditions results in a unidirectional solution which further gives constant features FM.

Our sample problems with the microscale model represent directional solidification from the left to the
right. To avoid the effects of initial and final transient stages on the evaluation of f and K, we perform aver-
aging of features only on a part of the computational domain as demonstrated in Fig. 3.

At the end of solidification, we count the number of intersections of the horizontal lines with crystal bound-
aries, Nx, within the domain for averaging as demonstrated in the right plot of Fig. 3. Similarly, we count the
number of intersections of the vertical lines with crystal boundaries, Ny. In general, Nx is much less than Ny if
the solidification microstructure pattern is columnar, while for equiaxed type of microstructure, Nx is only
slightly less than Ny. If the microstructure is fine (coarse), the number of intersections Ny is large (small). Since
the microstructure type (columnar or equiaxed) and microstructure size are of great interest, we define the

microstructure features as K � Nx
N y
; 1

Ny

� 	
. If Nx

Ny
6 0:7, we assume that the microstructure type is columnar. If

Nx
Ny
> 0:7, then we assume the microstructure type to be equiaxed. Here, 1

Ny
is a measure of the microstructure

size, thus a larger 1
Ny

corresponds to a larger microstructure size.
Let us now concentrate in the computation of the liquid volume fraction f(T,FM) at a given temperature T

for solidification with features FM. Recall that each sample problem is designed such that it leads to constant
features FM when solved with model M. f(T,FM) can be interpreted here as the probability of being liquid ‘in
the average’ at a given temperature T within the sample problem defined by features FM. Using the sample
problem results, we estimate f(T,FM) as the ratio of the number of grid points in our sample problem that
remain liquid at T to the total number of grid points. For each grid point x in the sample problem grid, ‘x
(Left) Domain for computation (outer rectangle) and domain for performing averaging (inner rectangle). (Right) Schematic of the
s for obtaining microstructure features.
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remains liquid at temperature T ’ is equivalent to ‘x solidifies at a temperature lower than T ’, that is
‘hs(x) < T ’, with hs the temperature at x at the time ts that it solidifies. Therefore, f(T,FM) can be evaluated
using the field of hs as follows:
f ðT ; F MÞ �
# of nodes with hs < T

total # of nodes
; sample problem defined with F M: ð20Þ
Notice that the evaluation of f(T,FM) in Eq. (20) is performed for each microscale sample problem only after
the solidification is complete in the whole domain. The above formulation (Eq. 20) can be used only when hs

(temperature at solidification) is obtained for all nodes. Before all nodes are solidified, hs(x) (temperature at
solidification) remains unknown for the liquid nodes (/(x) > 0). If the sample problem domain is increased,
then more number of points are used for averaging, which means better accuracy of estimation f(T,FM). How-
ever, the computation cost of solving the microscale model for the sample problem will also increase.

3.5. Sample problems relevant to the problem of interest

Given a sample problem, we need a methodology to infer its relevance to our problem of interest. One idea
is to use the microscale model for making this decision. Suppose that at location x for the problem of interest,
we obtain solution features (i.e. liquid volume fraction f xand microstructure features Kx), F x

full using the fully-
resolved model (this is of course a difficult or computationally impossible problem). Let us also assume that
for the sample problem, we obtain (f,K) using the microscale model as discussed in Section 3.4. If F x

full � F full,
i.e. (fx,Kx) � (f,K), then we could say that the selected sample problem is relevant to our problem of interest at
location x. Instead of using the fully-resolved model, we can use the much simpler model M to figure out the
relevance of the sample problem to the problem of interest. We could run the simple model M for the problem
of interest and the sample problem to obtain solution features F x

M and FM. Comparing these solution features,
we could have a sense whether the selected sample problem is relevant or not to our problem of interest at
location x.

Before exploring further the above idea, let us first introduce a number of definitions:

(1) Given predefined solution features F, if a sample problem P (with appropriate domain XP, initial and
boundary conditions) gives constant solution features over XP (denote the constants as F P

M) using model
M (i.e. "y 2 XP, F y

M ¼ F P
M), and if the constant solution features equal the predefined solution features

(i.e. F P
M ¼ F ), then we say that the sample problem P is relevant to solution features F with model M.

(2) Suppose that for the problem of interest at location x, the solution features of model M are F x
M. If a

sample problem P is relevant to solution features F x
M with model M, then we say that the sample problem

P is relevant to location x for the problem of interest with model M.
(3) If the sample problem P is relevant to location x for the problem of interest with both model M (i.e.

F P
M ¼ F x

M) and the fully-resolved model (i.e. F P
full ¼ F x

full), then we say that the sample problem P is con-

sistent with model M at location x for the problem of interest.

Remark 1. Note that in the definition of ‘relevance’ of the sample problem P to location x of the problem of
interest, we require constant solution features of model M for the sample problem. Constant solution features
over the sample problem domain gives us convenience in averaging the fully-resolved model solution, since all
grid points within the sample problem domain undergo the same condition (having the same solution features)
in the sense of model M. It is reasonable to use all grid points for performing the average to smooth out
variations in the microscopic solution (obtained using the fully-resolved model) as was detailed in Section 3.4.
3.6. Multiscale framework

Even though it is difficult to find a sample problem that is relevant to location x with the fully-resolved
model, we can find a sample problem, P, relevant to location x with the simpler model M (i.e. F P

M � F x
M)

as discussed earlier. By introducing the assumption that P is consistent with model M (i.e. P also relevant

to location x with the fully-resolved model), we can run the fully-resolved model to obtain (f P,KP), which
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is also (f x,Kx) according to the consistency assumption discussed earlier. In other words, once solution fea-
tures FM are given, we can find a relevant sample problem and use the consistent assumption to obtain f

and K. Therefore, f and K can be understood as functions of FM, i.e. f = f(T,FM) and K = K(FM). With this
idea, the macroscale model is changed to a multiscale model as follows (see Fig. 4):
qc
oT
ot
¼ kr2T � qL _f ; ð21Þ

f ¼ f ðT ; F MÞ; ð22Þ
K ¼ KðF MÞ: ð23Þ
Comparing the above model with the original macroscale model, we have now used FM to replace (Rx,Gx).
The procedure of using the database approach would then involve three important steps:

(1) Solve model M for the problem of interest to obtain the solution (hM and /M) and extract the solution
features F M ¼ V M;G

l
M

� �
.

(2) Define and solve relevant sample problems using the microscale model to evaluate f(T,FM) and K(FM).
(3) Solve qc oT

ot ¼ kr2T � qL _f with the obtained information of f = f(T,FM).

These three steps are demonstrated in Fig. 4. As shown in the box with dashed line (lower right of the
figure), model M and the fully-resolved model are used for the same sample problem. The sample problem
strategy discussed in Section 3.3 guarantees that the solution features of model M are equal to the given
solution features F x

M. We have an analytical solution with model M for the sample problem, so model
M is not numerically solved for the sample problem (as is the case for the problem of interest in step 1
of the algorithm above). Only the fully-resolved model is numerically solved for the sample problem to gen-
erate data for estimation of f(T,FM) and K(FM) so that the macroscale model incorporates information
from the microscale.

Once we have obtained the values of f at the various temperature levels for each node (according to FM at
the corresponding node) after step 2, we need to keep track of these values at each node in the memory. Notice
that the liquid volume fraction f appears in the temperature governing equation of the macroscale model,
whereas the microstructure features K do not appear in the temperature governing equation. Obtaining micro-
structure features K can be understood as a post-processing process. Since their values do not affect other
Model M
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Fig. 4. Schematic of the multiscale framework (steps indicated with the dark arrows).
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computations, the microstructure features K do not have to be tracked in the memory during the computation.
All the effect of the microscale on the macroscale is in the liquid volume fraction f.

The two horizontal arrows on the upper part of Fig. 4 demonstrate the procedure of using the fully-resolved
model to obtain macroscopic variables. This procedure is usually very time consuming and may be impossible
to perform due to limitations in computational resources. For this reason, we only solve the fully-resolved
model for the problem of interest in the first numerical example in Section 5 for validating the database
approach. The term ‘‘average’’ above the second arrow on the upper part of Fig. 4 is used to represent the
process of obtaining macroscopic variables including temperature, liquid volume fraction and microstructure
features as discussed in Section 2.2. However, due to the high computational cost, in the numerical example
with validation, only the macroscopic temperature T is computed following its definition (i.e. by averaging
microscopic temperature obtained from different sampling of potential nucleation sites). For validation of
the volume fraction f at a given time t, we will compare the solid–liquid interface position at time t (obtained
by the fully-resolved model) with the volume fraction contour lines (obtained by the database approach). Also
for validation of the microstructure features K at a given location x, we will compare the microstructure at
location x obtained by the fully-resolved model with the microstructure obtained by the database approach
(i.e. by searching in the database to obtain the microstructure with solution features nearest to FM(x)).

The first step in the above algorithm can be understood as a ‘prediction step’, since the temperature is pre-
dicted as hM using model M. The second step gathers information on volume fraction and microstructure fea-
tures from the microscale computations in the sample problem. The third step can be understood as a
‘correction step’, since the temperature is corrected with updated information on volume fraction.

The boundary and initial thermal conditions for the algorithm discussed up to now are the same for the
problem of interest when it is solved with model M, the fully-resolved model (e.g. in our first example in Sec-
tion 5.1.4) or the multiscale model. However, to increase the accuracy of the methodology while maintaining
the simplicity of model M, in our multiscale implementation, model M is applied only for a part of the domain
around the interface. The details of the overall algorithm are discussed next.

3.7. Overall multiscale algorithm

The procedure discussed in the previous section assumes that the selected sample problem is consistent at
any location x of the domain of the problem of interest with model M. This is a strong assumption especially
for a problem with large domain. The model M is not capable to very accurately model the evolution of tem-
perature. At the beginning of solidification, the error in temperature (i.e. the difference to temperature com-
puted by the fully-resolved model) is small. So the above procedure can predict the solidification
microstructure quite well for the early stages of solidification. However, as the error in temperature obtained
using model M (i.e. hM) becomes larger with time, the above procedure becomes less accurate for predicting
the obtained solidification microstructure.

In order to deal with this difficulty, we need to find a way to constrain the error accumulation in model M
by utilizing the temperature data obtained (from an earlier iteration) from solving the macroscale model (by
solving the heat diffusion equation with a latent heat term �qL _f ). The iterative method we used is demon-
strated in Fig. 5. For the first iteration (iteration 0 in Fig. 5), the procedure is as before. But at later iterations,
we apply model M only on the region near the solid–liquid interface (darker region in Fig. 5). At places far
away from the solid–liquid interface (lighter region in Fig. 5), we use the temperature from the macroscale
model obtained in the previous iteration. In this way, the temperature from the macroscale model, is always
applied as boundary condition for the region near the solid–liquid interface (i.e. darker region in Fig. 5) on
which model M is solved. Using temperature from the macroscale model as boundary condition constrains
the error of model M from accumulating.

In this approach, we need to define the region for applying model M (i.e. darker region in Fig. 5). Since
model M gives a signed distance field /M, we have the information of distance to the solid–liquid interface
at any location. We can introduce a parameter LM to specify the size of the region for applying model M.
For the region within distance LM away from the solid–liquid interface (i.e. |/M| 6 LM), we apply model
M. Otherwise (i.e. |/M| > LM), we use the temperature data from the macroscale model obtained in the pre-
vious iteration.
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The following is the procedure for implementation of this algorithm:

(1) Set iteration number i = 0.
(2) Solve model M to obtain hi

M, /i
M. If i > 0, essential boundary condition hM = Ti�1 is applied at nodes

with |/M| > LM when solving for the temperature field with model M. Obtain solution features F i
M

for every node point.
(3) For solution features F i

M at each node of the grid for the whole domain, find f(T,FM) and K(FM) by solv-
ing the appropriate sample problems.

(4) Obtain solution of temperature field Ti by solving qc oT
ot ¼ kr2T � qL _f with the updated liquid volume

fraction f.
(5) Set i = i + 1 and return to step 2 (three iterations were typically sufficient in the numerical examples

considered).

This algorithm uses solution of the macroscale model to improve our prediction of f, K and correspond-
ingly of T. Comparing with the algorithm without iterations, the additional cost we pay is the computation
time for the required iterations and the storage for Ti�1. To perform iteration i, we need to track the solution
of Ti�1 on the whole domain (for each node) and at all times (for each time step). Since we are using coarse
grid spacing and large time steps for T (macroscale computation), this additional storage is quite affordable.

4. Numerical implementation

4.1. Reducing the number of the needed sample problems using interpolation in the feature space

Solving the sample problem using the fully-resolved model is computational intensive due to the required
fine mesh. So in order to speed up the computation, we want to minimize the number of times for solving sam-
ple problems. The idea of interpolation is shown in Fig. 6. We only need to run a sample problem on each
node of the mesh (triangular mesh is shown in the schematic, but quadrilateral mesh is also used in the exam-
ples) generated in the feature space (Gl

M vs. VM instead of x vs. y). For evaluation of f and K at an arbitrary
feature, we will do interpolation.

As shown in Fig. 6, we first obtain F x
M on each node (macroscale grid) using model M. The relation between

temperature and liquid volume fraction at features F x
M (i.e. f ðT ; F x

MÞ) in general is not available in the
database. However, we can find a few such relations at features close to F x

M (as demonstrated in the top left
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triangle) in the database. They will be used to interpolate f T ; F x
M

� �
. We need to do this interpolation and store

the interpolated liquid volume fraction f for all nodes. After this, solving the macroscale model requires the
solution of the diffusion equation with a latent heat term determined by the interpolated f.

4.2. Storing sample problem results

In the database approach, there is a huge amount of data to be processed. For example, in our first numer-
ical example in Section 5, if a uniform mesh is used, the required mesh size is 1024 · 256 with around 0.25
million nodes. If a CFL coefficient 0.1 is used, then we will need about 1024/0.1 � 10,000 time steps. On each
node and at each time step, we have variables such as C, h, I, and /. So we will have around
0.25M · 10,000 · 4 = 10G float numbers as results of just one sample problem. For efficiency in storing data
and extracting useful information from data, we want to store the minimum amount of data. Another diffi-
culty in storing sample problem results is related with the adaptive meshing technique we used for solving sam-
ple problems on the microscale. Computation is performed on an adaptive mesh, while statistics must be
extracted using a uniform mesh.

To deal with these difficulties, during computation of the sample problem, at each time step, we store the
location x, current time (solidification time) ts, solidification temperature (temperature at x at the time ts) hs

and orientation angle I for each node only at the time it is solidified (i.e. /n�1 > 0 and /n
6 0). Since the small-

est grid spacing Dx is used for the region within some distance (3Dx in our computations) away from the solid/
liquid interface in both solid and liquid sides of the interface, each node i in the equivalent uniform mesh (i.e.
structured mesh with grid spacing Dx) will have data (including I, h, C) directly obtained from finite element
computation when �3Dx 6 /i 6 3Dx. If /i > 3Dx or /i < �3Dx, then data (including I, h, C) may have to be
obtained from interpolation, since the node may not exist in the adaptive mesh. During our computation, the



Fig. 7. Contour line of field ts at value ts = 250, 325 and 400 for one of the sample problems with VM = 0.02281344 and Gl
M ¼ 0:6708713

discussed in the numerical examples section. Regions of ts 6 250, 6325 and 6400 are colored with orientation angle to identify two
different crystals.
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selected CFL coefficient is always less than 1. Therefore, each node in the equivalent uniform mesh exists in the
adaptive mesh for the time interval within which it is solidified. In this way, each node in the equivalent uni-
form mesh will have data (i.e. x, ts, hs and I) recorded exactly once, even if adaptive meshing is used for com-
putation. We keep appending data (x, ts, hs and I) to a file, until all nodes in the adaptive mesh are solidified
(i.e. with / < 0). These recorded data basically contain information of ts, hs and I for all nodes in the equiv-
alent uniform mesh. However, the data is sorted by solidification time (not by location), since each row of data
is recorded at the time step during which the corresponding node is solidified (i.e. /n�1 > 0,and /n

6 0). So
after computation, we read the recorded file and obtain the ts, hs and I fields on the equivalent uniform mesh
according to the location information x. Although thousands of time steps are usually involved for a sample
problem, the three fields (ts(x), hs(x) and I(x)) provide all necessary information for the multiscale model. The
utilization of the fields hs(x) and I(x) to provide an estimation of the liquid volume fraction f and microstruc-
ture features FM was already discussed in Section 3.4.

Finally, note that the field ts contains information of the interface position at any time level. The contour
line of the field ts gives the position of the solid–liquid interface at the corresponding time level (contour line
value) as shown in Fig. 7.

4.3. Other implementation details

Note that the potential nucleation sites generally are not at the finite element nodes. In the implementation
of the nucleation algorithm and for storing the location of potential nucleation sites, we assign a list to each
element which contains the locations of all potential nucleation sites sampled inside this element. This list may
be empty, if there is no potential nucleation site inside this element or very long if there are lots of potential
nucleation sites inside it. For determination of whether a potential nucleation site nucleates, we do interpola-
tion (using data on the nodes of the element which contains the potential nucleation site) to find the actual
undercooling at the potential nucleation site, and compare it with the required undercooling. One also needs
to pay attention to the potential nucleation sites while remeshing. If an element is divided into a few sub-ele-
ments, each potential nucleation site inside the parent element is assigned to the sub-element which contains it.

5. Numerical examples

5.1. Verification of the database approach

The following dimensionless material properties are considered in this section: potential nucleation site den-
sity qn = 100, the required undercooling for nucleation Dhn satisfies a normal distribution N(1.5,0.22), density
q = 1, heat capacity c = 1, heat diffusion coefficient k = 1, latent heat L = 100, Lewis number Le = 100, melt-
ing temperature hm = 0, initial concentration C0 = 0.1, liquidus slope ml = �10, partition coefficient kp = 0.1,
Gibbs–Thomson relation with anisotropy in kinetic undercooling h� ¼ hm þ mlC

l � 2
3
f1� cos½4ða� IÞ�gV ,

where a is the angle between the positive x axis and the interface normal direction. Notice that the large latent
heat L = 100 makes the problem nontrivial on the macroscale, whereas the large Lewis number Le = 100
makes the problem nontrivial on the microscale.

The computational domain is of size 40 · 40. However, the left-top quarter is not included making the com-
putational domain irregular. Initially, the whole domain is at temperature 10. The right side is assumed to be
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adiabatic. The temperature applied on all other sides is taken as Tb = 50exp(�t/10) � 40 or Tb = 100exp(�t/
20) � 90 in two different runs in order to study the effects of the boundary conditions on the obtained solid-
ification microstructure.

5.1.1. Computational results using model M

Using an adaptive mesh with smallest grid spacing 0.1563, we obtain solution features of VM and Gl
M for

temperature boundary condition Tb = 50exp(�t/10) � 40 and Tb = 100exp(�t/20) � 90 as shown in Fig. 8.
Using four computation nodes (each with 2 · 3.8G CPUs), the required computational time was around 1 h.

By comparing the results for the two cases, we find that the growth velocity VM for the case with
Tb = 50exp(�t/10) � 40 is much lower than for the case with Tb = 100 exp(�t/20) � 90, whereas the temper-
ature gradient Gl

M is only slightly smaller.

5.1.2. Results of sample problems

Fig. 9 plots the computed VM and Gl
M for all locations in both runs (with temperature boundary condition

Tb = 50exp(�t/10) � 40 and Tb = 100 exp(�t/20) � 90) in the feature space. As discussed in Section 4.1, we
can use interpolation to obtain the liquid volume fraction and the microstructure features for each of the fea-
tures in the left plot of Fig. 9. Sixty four sample problems are selected to give data for interpolation. The fea-
tures (VM and Gl

M) of these 64 sample problems are selected to be uniformly distributed in the log scale as
shown on right plot of Fig. 9. Recall that both analytical and experimental results show that microstructure
features are in the power form of growth velocity and thermal gradient (i.e. �VaGb with a, b constants).

For each sample problem, we use a domain size of 10 · 2.5 with smallest grid spacing 0.0098 for adaptive
meshing. The selected grid spacing 0.0098 is much smaller than the grid spacing 0.1563 used for running model
M. Using a CFL coefficient 0.125, it takes around 8000 time steps to perform the simulation for each sample
problem. We use a cluster with 64 nodes (each node with 2 · 3.8G CPUs) to compute these sample problems.
Each node is used to perform computation of one sample problem. The computational time is around 5 h.
Results of these sample problems in the domain for statistical analysis (as demonstrated in Fig. 3) are shown
in Fig. 10. From results of these sample problems, we observe a continuous transition between equiaxed
growth and columnar growth with various grain sizes. This study is similar to the previous numerical studies
[16,4], in which computations are performed at various thermal gradients and growth velocities. In [16,4], the
thermal gradient G and growth velocity V are assumed to be constant, which are only applicable to directional
growth. There is no relation established between the performed numerical study at a particular growth speed V

and thermal gradient G with other problems. However, in this work, the thermal gradient Gl
M and growth

velocity VM are obtained from the solution of model M for the problem of interest. The sample problems
are relevant to our problem of interest with model M. We will utilize the information obtained from the micro-
scale solution of sample problems to solve the problem of interest by introducing the assumption that the sam-
ple problem is also consistent to our problem of interest with model M.

Notice that the microstructure pattern (obtained from the fully-resolved model) over the whole sample
problem domain is rather uniform for each sample problem. This is a consequence of constant solution fea-
tures (from model M) over the sample problem domain.
Fig. 8. Contour of VM (left two plots) and Gl
M (right two plots) for temperature boundary condition Tb = 50exp(�t/10) � 40 (the first and

the third plots) and Tb = 100exp(�t/20) � 90 (the second and fourth plots).



Fig. 10. Obtained microstructure of 64 sample runs. Each rectangle corresponds to a feature (VM, Gl
M) shown in the right plot of Fig. 9.

The temperature gradient increases from left to right on a given row (constant growth velocity) and the growth velocity increases from
bottom to top on a given column (constant temperature gradient).
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Fig. 9. (Left) Obtained features of model M, (VM and Gl
M) with temperature boundary condition Tb = 50exp(�t/10) � 40 (red square

symbols) and Tb = 100exp(�t/20) � 90 (green triangle symbols). (Right) (VM, Gl
M) of 64 sample problems selected for applying the fully-

resolved model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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5.1.3. Results of the database approach

From the results of model M, we obtain FM(x) on the whole domain. The computed relation between the
liquid volume fraction f and temperature T for the 64 sample problems considered is shown in Fig. 11.
Using interpolation based on the obtained relation of the liquid volume fraction and temperature for the
sample problems with different FM (i.e. f(T,FM)), we are able to find the liquid volume fraction f(x, t) for
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solving the macroscale model. The temperature obtained from the macroscale model can then be used to
improve the computation of FM(x). Fig. 12 demonstrates how the predicted microstructure feature Nx

Ny

changes with iterations. The field of Nx
Ny

at the second iteration is very similar to the field of Nx
Ny

at the third
iteration demonstrating that the solution has converged after three iterations. In our computation, LM is
selected to be 5.

With the results of the 64 sample problems (database) in place and the obtained VM, Gl
M for the problem of

interest, we can now perform interpolation to obtain the microstructure size 1
Ny

and microstructure type Nx
Ny

as

demonstrated in Figs. 13 and 14. Using a uniform mesh with grid spacing 0.3125 and a fixed time step of 0.1,
the computation time with one computation node (2 · 3.8G CPUs) is around 20 min for the case with bound-
ary condition Tb = 50exp(�t/10) � 40 and around 10 min for the case with boundary condition
Tb = 100exp(�t/20) � 90.

In order to give a picture of how the microstructure may appear at a particular location with features
V MðxÞ;Gl

MðxÞ
� �

, we can search in the database to find the microstructure with the features closest to

V MðxÞ;Gl
MðxÞ

� �
as demonstrated in the 14 microstructures in Figs. 13 and 14. From the contour of field 1

Ny
Fig. 12. Predicted field of Nx
Ny

at the first, second, and third iteration for the case with Tb = 100exp(�t/20) � 90. Contour line with value 0.7
demonstrates the predicted location of columnar to equiaxed transition (CET).



Fig. 13. Field of 1
Ny

(the 14 microstructures shown correspond to the closest microstructure in the database). (Left) Tb = 50exp(�t/

10) � 40. (Right) Tb = 100exp(�t/20) � 90.

Fig. 14. Field of Nx
Ny

(the 14 microstructures correspond to the closest microstructure in the database). (Left) Tb = 50exp(�t/10) � 40.
(Right) Tb = 100exp(�t/20) � 90.
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or the closest microstructures in Fig. 13, we can predict that large grains will be formed in the center of the
casting. The case of the boundary condition Tb = 50exp(�t/10) � 40 leads to larger grains than the case with
boundary condition Tb = 100exp(�t/20) � 90.

The contour line in Fig. 14 corresponds to Nx
Ny
¼ 0:7. It is the predicted location of columnar to equiaxed

transition. In both cases, it is predicted that we will obtain equiaxed microstructures at the corners and also
at the center of the domain.

5.1.4. Comparison of microstructure features and liquid volume fraction obtained from the microscale model and
the database approach

As a validation of the database approach, we also performed the microscale model on the whole domain
with smallest grid spacing 0.0098 for adaptive meshing. The CFL coefficient is selected to be 0.125. Using eight
computation nodes (each node with 2 · 3.8G CPUs), the total computation time for each case is about 2 days.

For validation of the database approach, the microstructure features K(x) are not directly compared with
the microscale results. We perform the comparison in the following way: (1) solve the microscale model to
obtain microstructure details all over the domain, (2) obtain K using the database approach, pick up a few
locations in the domain, search the closest microstructure in the database for these locations, and (3) for each



L. Tan, N. Zabaras / Journal of Computational Physics 227 (2007) 728–754 747
selected location, compare the searched microstructure (from the database) and the microstructure obtained
using the microscale model at the corresponding location in the first step. Such a comparison for both cases
(different boundary conditions) is demonstrated in Fig. 15. Although this type of comparison is only a qual-
itative one, it demonstrates that the database approach is capable of predicting microstructure patterns quite
well with significantly less computational cost.

At time 130 for the case with Tb = 50exp(�t/10) � 40, the solid–liquid front (using the microscale model)
falls almost exactly inside the region with volume fraction 0.05 6 f 6 0.95 (using the database approach) as
shown in Fig. 16. This suggests that the database approach is also accurate for predicting volume fractions.
Fig. 15. Comparison of the predicted microstructures using the database approach with the microstructures obtained from solving the
problem in the whole domain using the microscale model. (Left) Tb = 50exp(�t/10) � 40. (Right) Tb = 100exp(�t/20) � 90. For each plot
(left or right): the picture in the middle is the fully-resolved result; the dark line in the middle picture is the predicted location of CET

transition using the database approach Nx
N y
¼ 0:7

� 	
; the 14 pictures (around the middle picture) are the closest microstructure in the

database based on features FM at selected locations.

Fig. 16. (Left) Predicted temperature field and liquid volume fraction contours with values 0.95 and 0.05 at time 130 for the case with
Tb = 50exp(�t/10) � 40. (Right) Obtained microstructure (using microscale model) and liquid volume fraction contours with value 0.95
and 0.05 (using the database approach) at time 130 for the case with Tb = 50exp(�t/10) � 40.
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5.1.5. Comparison of the temperature field obtained from the microscale model and the database approach

As discussed earlier, the macroscopic temperature obtained from the database approach is the expectation
of microscopic temperature (i.e. T(x, t) = Æh(x, t)æ). In order to obtain the expectation of microscopic temper-
ature for comparison with macroscopic temperature, we performed three microscale computations for the case
with Tb = 100exp(�t/20) � 90 using different sampling of potential nucleation sites. The microstructure at
time 81.6 for these three computations is shown in Fig. 17. Because the potential nucleation sites in these three
microscale computations are different, the obtained microstructural details are also different. Correspondingly,
the microscopic temperature is also different as shown in Fig. 18.

In the database approach, we have approximated that f(x, t) = f(T(x, t), FM(x)) instead of using
f(x, t) = f(T(x, t)). Two questions may be raised regarding this approximation. First, will f = f(T,FM) lead
to significantly different results (volume fraction and temperature) from f = f(T)? Secondly, is the approxima-
tion f = f(T,FM) good enough for obtaining similar results to those from the fully-resolved model. It is very
obvious that FM has a great effect on volume fraction as shown in Fig. 11. For the case with Tb = 100exp(�t/
20) � 90, we computed the temperature field at time 81.6 using the fully-resolved model (after averaging
among the three microscale computations), using the database approach (f = f(T,FM)) and using the level rule
(f = f(T)) with results shown in Fig. 19. The temperature field obtained from the database approach is very
similar to the temperature field obtained from the microscale model except that small scale variations of tem-
perature exist in the results of the microscale model, which is due to nucleation and growth of equiaxed crys-
tals and the variation in dendrite front position. The temperature field obtained from the Lever rule with
approximation f = f(T), however, is quite different from the microscale model result. The results in Figs. 16
and 19 demonstrate that the approximation of f = f(T,FM) can successfully incorporate the effects of micro-
structure morphology on volume fraction and temperature.
Fig. 17. Microstructure at time 81.6 for the case with Tb = 100exp(�t/20) � 90 using different sampling of potential nucleation sites.

Fig. 18. (Left 3 plots) Microscopic temperature at time 81.6 for the case with Tb = 100exp(�t/20) � 90 using different sampling of
potential nucleation sites. (Right plot) Averaged microscopic temperature.



Fig. 19. Temperature field at time 81.6 for the case with Tb = 100exp(�t/20) � 90. Contour line shows the position where the temperature
is �2. (Left) Temperature field obtained from the microscale model by averaging among three computation results. (Middle) Predicted
temperature field from the database approach. (Right) Predicted temperature using the Lever rule.
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5.2. Application to the solidification of an Al–Cu alloy

In the previous numerical example, the material parameters were selected to demonstrate and validate the
multiscale modeling approach. The domain size of the interested problem and domain size of the sample prob-
lem were selected to be around 40 · 40 and 10 · 2.5. The material parameters and domain size were selected in
the above example so that it will be possible to perform fully-resolved computations in the microscale to val-
idate the multiscale model results.

In this section, we will use an Al–Cu alloy with material parameters provided in [16]: partition coefficient
kp = 0.14, liquidus slope ml = �2.6 K/wt.%, solute diffusion coefficient Dl = 3000 lm2/s, melting temperature
Tm = 933.47 K, Gibbs–Thomson relation coefficient �c = �0.24 K lm, surface tension anisotropy e = 0.01,
density of potential nucleation sites d�2

s with ds = 9.7 lm. Here, ds is the potential nucleation site distance.
We model the required undercooling for nucleation as a Gaussian random variable with mean 7.5 K and stan-
dard deviation 1.25 K.

The domain size of the sample problem should be in the order of 10ds to 100ds to ensure that enough
crystals are included to capture the overall behavior. The grid spacing for the fully-resolved model should
be in the order of 0.1ds to ensure that microstructure details can be computed. To satisfy these two con-
straints, we select our sample problem size as 120

ffiffiffi
2
p

ds � 36
ffiffiffi
2
p

ds and grid spacing for the fully-resolved
model as 0.8574 lm.

Other parameters related with heat transfer (which is not considered in [16]) are: density q = 2400 kg/m3,
heat capacity c = 1.06 kJ/(kg K), heat diffusivity k = 82.6 W/(m K), and latent heat L = 397.5 kJ/kg. We con-
sider a square region with side length 100 mm (which is the typical size of a casting) filled with the Al–1%Cu
alloy at an initial temperature of 970 K. The top side is adiabatic (i.e. q = 0), while other three sides are kept at
temperature Tb = 650exp(�t) + 320. A schematic of this example is provided in Fig. 20.

Our aim is to obtain the microstructure pattern after solidification and also the temperature field during

solidification. If a fully-resolved model is used, the estimated number of grid nodes is 100 mm
0:8574 lm

� 	2

with value

about 14G. If a CFL coefficient 0.1 is used, the estimated number of time steps is about 10� 100 mm
0:8574 lm

� 	
with

value 1.2M. 1.2M time steps and 14G degrees of freedom is almost impossible to solve with current compu-
tational resources. Therefore, we will only provide results of the database approach for this example.

As in the first example, we first use model M to obtain solution features i.e. (VM,GM). Using symmetry
of the problem, an uniform mesh with size 192 · 384 is used. Around 30 min are required to perform the
computation using model M using one computation node (3.8 G · 2 CPU). The obtained fields of VM and
GM are shown in Fig. 21. By plotting the obtained data in the VM and GM coordinates, we obtain the left
plot in Fig. 22. A mesh with 11 nodes is generated to occupy roughly the same region as the obtained
(VM,GM) data points. For each node of the mesh, we are going to solve a sample problem using the
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relevant size of the domain of the sample problem versus the size of the domain of the problem of interest. It is magnified by 50 times in the
right plot.
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fully-resolved model. An adaptive mesh (equivalent to a uniform mesh with size 1920 · 576) is used for
solving the sample problem. Note that in this example, periodic boundary conditions are applied for heat
transfer, solute transport, level set evolution when solving the sample problem with the fully-resolved
model as demonstrated in Fig. 23. Each sample problem takes about 36 h using one computation node
(3.8 G · 2 CPU). Eleven computation nodes are utilized to solve simultaneously all 11 sample problems.
Results of a few typical sample problems are shown in Fig. 24. As shown in Fig. 25, the liquid volume
fractions for these sample runs are different from the one predicted by the Lever rule, which is widely used
in macroscale solidification models. With liquid volume fraction f obtained for each of the sample prob-
lems, we are able to use interpolation to obtain f for any given (VM,GM) and solve the macroscale model
Fig. 23. Demonstration of sample problem domain with periodic boundary conditions applied at the top and bottom sides. The bottom
half is the computational domain, the top half is just a copy of the solution from the bottom.
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Fig. 24. Sample problem results using the fully-resolved model.



Temperature (K)

Li
qu

id
 v

ol
um

e 
fr

ac
tio

n

915 920 925 930
0

0.2

0.4

0.6

0.8

1
Sample 1
Sample 2
Sample 3
Sample 4
Sample 5
Sample 6
Sample 7
Sample 8
Lever rule

Fig. 25. Relation of volume fraction and temperature.

0 20 40 60 80 100
0

20

40

60

80

100

945
940
935
930
925
900
850
800
750
700
650
600
550
500
450
400
350

Fig. 26. Temperature field at time 40 s. (Left) Predicted by Lever rule. (Right) Predicted by the database approach.

752 L. Tan, N. Zabaras / Journal of Computational Physics 227 (2007) 728–754
i:e: qc oT
ot ¼ kr2T � qL _f

� �
and perform iterations to improve accuracy of the solution. It takes about 1

hour to finish two more iterations using one computation node (3.8 G · 2 CPU). The predicted tempera-
ture at time 12.7 s is shown in the right half of Fig. 26. Comparing with the predicted temperature using
Lever rule (shown in the left half of Fig. 26), the temperature in the center of the domain is about 5 K
lower. This difference is expected since the volume fraction using the database approach is significantly
different from the predicted volume fraction using the Lever rule. Finally, as a post-processing procedure,
we can search in the database according to the fields of VM and GM to obtain the microstructure. Micro-
structure in the database with nearest solution features are given in Fig. 27 for eight locations as the loca-
tion approaches from the side to the center (A–D in Fig. 27). The microstructure pattern changes from
fine columnar to coarse columnar and then to coarse equiaxed. As the location approaches from the cor-
ner to the center (E–H in Fig. 27), the microstructure pattern changes from fine equiaxed to coarse
equiaxed.



Fig. 27. GM and VM fields (left half is result of the first iteration, right half is result after three iterations) and nearest microstructure in
database at location A (95 mm,75 mm), B (90 mm,75 mm), C (75 mm,75 mm), D (60 mm,80 mm), E (90 mm,10 mm), F (80 mm,20 mm),
G (65 mm,35 mm), H (50 mm,50 mm).
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6. Conclusions

In this work, we utilize three models for an efficient study of solidification. A computationally efficient
model is used to select relevant sample problems. A microscale model is used to generate the database by solv-
ing the selected sample problems. A macroscale model is used to efficiently compute solidification with inputs
from the database. The results of the macroscale model are further utilized to improve the evaluation of vol-
ume fraction and microstructure features. In other multiscale solidification studies in literature, only two mod-
els are used: a microscale model to capture microstructure details and a macroscale model to capture global
effects. The computationally efficient model plays a crucial role in our multiscale framework. An analytical
solution of the computationally efficient model is utilized to define relevant sample problems based on solution
features obtained from the computationally efficient model. Interpolation is used to greatly reduce the number
of sample problems needed. Numerical results of the sample problems using the microscale model are stored
using only three fields, solidification time, temperature at solidification time, and orientation angle at solidi-
fication time. The proposed multiscale framework for solidification is demonstrated in two cases with the same
irregular domain but different boundary conditions. The time consuming microscale model is also solved to
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allow comparison with the computational results from the multiscale method. The predicted microstructure
type (CET location), microstucture size, and volume fraction using the multiscale method compares well with
the microscale model results.

This is the first study of using a database approach for solidification by quantitatively exploring similarities
between sample problems and interested problems. The proposed framework with a computationally efficient
model to select relevant sample problems is novel and potentially applicable to problems other than solidifi-
cation. Current efforts are on applying this framework to three-dimensional solidification and extending it to
solidification systems with convection.
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